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Homogeneous nucleation of supercooled water:
Results from a new equation of state
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Abstract. A series of laboratory and aircraft measurements have indicated
that supercooled liquid water exists to temperatures as low as —70°C. These
measurements also show that classical nucleation theory, using standard values for
the thermodynamic properties of supercooled water, underestimates the nucleation
rate of ice in liquid water at large supercoolings. New theoretical estimates for this
homogeneous nucleation rate are presented, based on a new analytic equation of
state for liquid water. The new equation of state, which is accurate over a pressure
range of 3000 atmospheres and a temperature range of 1200 K, is used to infer
the latent heat of melting, liquid water density, and ice-water surface energy of
supercooled water. Predictions of the nucleation rate and the homogeneous freezing
temperature made by this equation of state are in agreement with observations
at temperatures as cold as —70°C and at pressures as high as 2000 atmospheres.
These results indicate that it is not necessary to invoke a phase transition at —45°C

to explain aircraft and laboratory observations of homogeneous ice nucleation in

supercooled water clouds.

1. Introduction

During the last 15 years several new measurements
of the rate of homogeneous nucleation of ice in super-
cooled liquid water have become available. These data
include nucleation rate measurements in an expansion
cloud chamber to —45°C [Hagen et al., 1981] and cirrus
observations of supercooled water at —35° — —40°C
[Sassen and Dodd, 1988; Heymsfield and Miloshevich,
1993]. Nucleation rates reported by these investigators
are substantially higher than those predicted by clas-
sical nucleation theory using standard estimates of the
physical properties of water extrapolated to supercooled
temperatures [Pruppacher, 1995].

The discrepancy between observed and calculated
nucleation rates is one symptom of a larger problem:
the absence of a physical model of liquid water that
accounts for its unusual properties. These properties
include the density maximum at 4°C (1 atmosphere)
and the rapid change in the specific heat (¢,) and
other thermodynamic variables as liquid water is cooled
to Ty= —45°C. Speedy and Angell [1976] and Speedy
[1982a, b] proposed the “stability limit conjecture” to
explain the apparently asymptotic behavior of the heat
capacity, density, and latent heat, postulating a limit
to the mechanical stability of liquid water at 7T and
atmospheric pressure.
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Recently, Pruppacher [1995] used this idea to explain
the failure of classical nucleation theory to predict ob-
served nucleation rates at low temperatures. He ex-
trapolated steep increases in the density, heat capacity,
latent heat of evaporation, and viscosity and steep de-
creases in the density, ice-water surface energy, and lat-
ent heat of melting consistent with a second-order phase
transition at —45°C. He then used these new values
and the observed nucleation rate to derive the activa-
tion energy required to diffuse water molecules across
the ice-water interface.

Although Pruppacher’s approach was consistent with
most measurements of water properties available prior
to 1995, experiments conducted by Xie et al. [1993],
Bartell and Huang [1994], and Huang and Bartell [1995]
have cast fundamental doubt on the idea of a stability
limit for liquid water at atmospheric temperatures and
pressures. Xie et al. measured the absolute structure
factor of liquid water to —34°C and found no change in
the correlation lengths of density fluctuations as T was
approached, in contrast to the strong fluctuations to be
expected because of a stability limit. Huang and Bartell
used electron diffraction measurements of a beam of
water clusters condensing in supersonic flow to establish
the presence of liquid water at T= —70°C and to infer
a nucleation rate at that temperature. Given the large
viscosity of water at —70°C, it is possible that the liquid
droplets observed in these experiments were nucleating
at timescales longer than the microsecond observation
times of the electron diffraction measurement. However,
recent computer simulations indicate that equilibration
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times are of the order of a few nanoseconds, making it
likely that the liquid phase is, indeed, still mechanically
stable at these very low temperatures [Tanaka, 1996;
Speedy, 1996].

In this paper we will use a new equation of state for
water to derive homogeneous nucleation rates in the
temperature range —70°C < T'< —30°C and the pres-
sure range 1 < p < 2000 atmospheres. Our approach
is similar in spirit to Pruppacher’s [1995], in that we
reexamine classical nucleation theory in light of new
information that has recently become available on the
properties of liquid water. It differs from his in that an
analytic equation of state, rather than extrapolations
based on the stability limit conjecture, will provide the
temperature and pressure dependence of the density,
entropy, latent heat, and surface energy of liquid water.

The activation energy for diffusion across the ice-
water interface is also needed for the nucleation rate
and cannot be obtained directly from the equation of
state; this quantity will be estimated independently us-
ing recent measurements of the self-diffusion of water.
The resulting pressure and temperature dependence of
the nucleation rate calculated from these parameters
(and a derived quantity called the homogeneous freezing
temperature) are in agreement with the laboratory and
aircraft measurements mentioned above, including the
new T'= —70°C nucleation results of Huang and Bartell
[1995].

We briefly review the classical nucleation equation
and present the equation of state in section 2. In sec-
tions 3, 4, and 5 we estimate the ice-water interface en-
ergy, the energy of germ formation, and the activation
energy. We show the temperature and pressure depend-
ence of the nucleation rate and homogeneous freezing
temperature calculated from these energies in section 6
and summarize the results in section 7.

2. Equation of State

The classical rate of homogeneous nucleation of an
ice germ in a liquid water droplet is given by

B puwkT\ (Tijw\1/? _Ag;é
J = {2Nc<pih>(kT) KPR |

exp [—%] , 1)

where N, is the number of monomers of water in contact
with unit area of the ice surface, p,, is the liquid wa-
ter density, p; is the density of ice, T' is the temperature
and N, can be estimated accurately as 5.85 x 10** cm—2
[Pruppacher and Klett, 1997, equation 7-51] (see the
notation list for a complete list of symbols). The term
in (1) enclosed in braces (the nucleation prefactor) rep-
resents the diffusive molecular flux across the liquid-
solid interface. Recently, Oxztoby and Harrowell [1992]
have argued that the prefactor used in (1) underestim-
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ates the molecular jump rate across the interface. Al-
ternative formulations for the prefactor change the nuc-
leation rate by 1-2 orders of magnitude at temperatures
above 200 K [see, e.g., Huang and Bartell, 1995, Figure
7).

Evaluation of (1) requires estimates of the densities p;
and py, the free energy of germ formation AFy, the ac-
tivation energy Ag#, and the interface energy o; Jw- The
energy of formation AFg, in turn, requires the surface
energy i/, and an estimate of the equilibrium germ ra-
dius [Pruppacher and Klett, 1997, equation 7-52, with
correction]:

(2)

Determination of a4 is discussed in Section 4; it also
requires knowledge of the liquid water density p, and
the latent heat of melting L,,.

We use standard values for the ice density p; [Prup-
pacher and Klett, 1997, equation 3-2] and in section 3
derive a relation between L, and the interface energy
0ijw- The density p, can be found from an equation
of state of the form p, = f(p,T), which also yields L,,
using Maxwell’s relations:

P = (o), .
Ln = T(su—s), (30)

where p is the pressure, a is the specific Helmoltz free
energy, s is the specific entropy, a, is the specific
volume (1/py), and the subscripts w and i denote li-
quid and ice, respectively. The entropy of ice s; is as-
sumed to be independent of pressure; it is determined
from an analytic integration of the heat capacity of ice
[Pruppacher and Klett, 1997, equation 3-12]:

s; = 1.885log(T) + 0.132T — 5.115 (4)

where T is in Kelvins and s; is in Jkg~! K~1.

The analytic equation of state used here is described
in detail by Jeffery [1996] and will be treated in this
paper as an empirical relation. We include a brief out-
line of the derivation in Appendix A, with numerical
values of the fitted parameters; in this section we show
densities and heat capacities. The equation of state has
the following form:

()

where F is a function discussed in Appendix A. The
factor of 2 in (5) reflects the 2 moles of hydrogen bonds
in each mole of water. Equation (5) is a “mixture mod-
el”; the hydrogen bonds act as a separate species of
water, exerting their own pressure ppp. The hydrogen
bond fraction is temperature dependent; its form is also

p= F(pw:T) = Po +2phba
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given in Appendix A. Above freezing the bond fraction
falls to zero, and the only contribution to the pressure
comes from the background pressure term py. By con-
sidering separately the effect of hydrogen bonds on the
free energy a and (through (3a)) the pressure p, (5) is
able to accurately predict the thermodynamic proper-
ties of water at supercooled temperatures.

The mixture model described here was first employed
by Poole et al. [1994], who used the Van der Waals equa-
tion to calculate pg and demonstrated qualitatively that
(5) was able to produce the density maximum of water.
We have introduced a much more accurate form for pg
and modified the pp; formulation of Poole et al. so that
its influence is limited to supercooled temperatures.

Figures 1a and 1b show the agreement between steam
table [Haar et al., 1984] and supercooled measurements
[Hare and Sorensen, 1987] and the equation of state
in the pressure range 1 bar < p < 2800 bars and
the temperature range —40°C < T < 1000°C. The
equation predicts a density maximum at pressures up
to 800 bars, as open hydrogen bonds force a local dens-
ity related to their perfect tetrahedral geometry. The
bonds are broken at pressures above 800 atmospheres,
removing the density maximum. The displacement of
the density maximum to lower temperatures with in-
creasing pressure is in agreement with measurements
[Angell, 1982, page 27].

We can compare the steam table values for the dens-
ity with the present equation of state and three other
cubic equations of state by grouping (T, p, py) triplets
in bins of width 24 kg m~3in the temperature and pres-
sure range 0°C < T < 700°C, 0.1 bar < p < 1200 bars
and calculating the average rms percentage deviation of
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Figure 1la. Isobaric density of liquid water. Circle

points are data from Haar et al. [1984] and Hare and
Sorensen [1987]. Boxed region is expanded in Figure 1b.
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Figure 1b. Asin Figure la but magnified for the tem-
perature range —40°C < T < 100°C.
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the predicted density from the steam table values. The
average rms percentage density deviation with this bin-
ning is 0.490, 11.06, 21.7 and 59.7 for the present equa-
tion of state, Song and Mason [1989], Peng-Robinson
[Melhem et al., 1989], and Van der Waals, respectively.
Above supercooled temperatures the new equation of
state is approximately 20 times more accurate than
other equations of state of similar complexity. Adding
supercooled data to the fit and extending the temperat-
ure and pressure range to —34°C < T < 1200°C, and
0.1 bar < p < 3000 bars decreases the average density
deviation of the present equation of state from 0.49%
to 0.41%.

Figure 2 shows the heat capacity derived from (5)
using (3a), (3b), and the Maxwell relation:

08y
Cp =T <-5‘T—>T .

At a pressure of 1 bar the equation of state matches the
observed increase of ¢, as the temperature decreases to
—45°C. The equation of state does not show a stabil-
ity limit at supercooled temperatures. Rather there is
a continuous change from the properties of supercooled
water to those of ice. Not shown here are other water
properties predicted by the the equation of state, such
as the observed anomalous increase in ¢, at the crit-
ical point. The equation also predicts a phase trans-
ition between high-density and low-density liquid water
above 1000 bars at supercooled temperatures and a
second critical point for liquid water. These high pres-
sure/low temperature results are discussed by Jeffery

[1996].

(6)
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Figure 2. Isobaric heat capacity predicted by the new
equation of state at five pressures. Circle points are
data from Haar et al. [1984] and Angell et al. [1982].

3. Ice-Water Surface Energy

The equation of state provides the density p, and
entropy s, of liquid water over a wide range of temper-
atures and pressure. The evaluation of the nucleation
rate also requires the ice-water surface energy 7/, as
a function of temperature and pressure. We adopt a
pressure-dependent empirical relation that relates oy,
to the latent heat of melting L,,, which is predicted
from the equation of state through (3c). The basis for
this relation is the observation of Turnbull [1950], who
noted that the solid-liquid interface energies oy of a
number of metals and metalloids were closely related to
L, through

05 N kTmef/:a/Ni/s, (7

where p, is the density of the solid phase in mol m™3,

Ly, isinJ mol_l, and N4 is Avogadro’s number. The
coefficient k7 is about 0.45 for metals and 0.32 for water
and several metalloids. A summary of Turnbull’s results
for materials with k7 =~ 0.32 is shown in Table 1. We
will use k7 = 0.32 below.

Equation (7) cannot be derived from thermodynam-
ics, but it has consistently been predicted by various
molecular theories including, most recently, the inhomo-
geneous cell model of Liu [1993] and the density func-
tional theory of McMullen and Oxtoby [1988].

As it stands, (7) does not capture the commonly as-
sumed temperature dependence of 0;/,, at atmospheric
pressures. Equation (7) produces a 0/, estimate that
decreases significantly faster than typical estimates of
the water-air surface energy or the ice-water surface
energy [Floriano and Angell, 1990]. Dufour and Defay
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Table 1. The k7 Values for Different Metalloids

Metal ko Metal kr
Water 0.32  Bismuth 0.33
Antimony 0.302 Germanium 0.348

From Turnbull [1950].

[1963, equation 13.95] and Pruppacher and Klett [1978,
equation 5-47a] have produced temperature-dependent
estimates of 0/, based on scaling arguments using the
latent heat of ice and water. Figure 3 shows these ex-
trapolations of ¢;/,, together with the existing experi-
mental data at 0°C.

We will assume a similar temperature dependence for
(7) using an empirically determined constant k,:

Gijw = krLmpi P INY® — ko T, 8)

where p; is the density of ice, T is in degrees Celsius,
and k, = 0.00009 J m~2 K.

The numerical value of k, is independent of temper-
ature and pressure; it is chosen using (1) to yield the
observed temperature dependence of the nucleation rate
at 1 atmosphere in Section 6. Figure 3 shows (8) eval-
uated at pressures of 1 bar, where it has approximately
the same slope as Pruppacher and Klett’s [1978] extra-
polation, and at 550 bars, where the increase in L,
with pressure has increased oy/,, at all temperatures.
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Figure 3. The value 0;/,, at supercooled temperatures.
Values at 1 bar and 550 bars are generated from (8)
with kr = 0.32 and k, = 0.00009 J m~2 K~!. Curve
labeled Pruppacher and Klett [1978] is calculated from
their equation 5-47a and curve labeled Dufour and De-
fay [1963] is from their equation 13.95. Square is from
Ketcham and Hobbs [1969], circle is from Wood and
Walton [1970], triangle from Coriel et al. [1971], plus
sign is from Jones [1973], cross is from Hardy [1977]
and diamond is from Jones [1973].
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No measurements are available to directly test the
pressure dependence of (8). It can, however, be tested
indirectly via predictions of the homogeneous freezing
temperature. In section 6 we present homogeneous
freezing temperature predictions made using (8) at pres-
sures as high as 2000 atmospheres.

4. Energy of Formation

The free energy of germ formation (AF,) defined by
(2) is the energy required to construct an ice germ of
critical radius ag4. The critical radius used in (2) is
the equilibrium germ radius found by integrating the
equilibrium condition for an ice germ in a supercooled
droplet of pure water, which is itself in equilibrium with
humid air. [Pruppacher and Klett, 1997, equations 6-52
and 6-10]:

_ 2 (%ifw
I o \%el) ”‘( o )dT + 2(L_i)d<”w/a)
Pw Pi aq

_ 2y (”ﬂ> = 0. (9)

Pi a;

Here a; is the ice germ radius, and we have included in
(9) a correction to the latent heat of fusion L,, for the
pressure difference between the germ and the surround-
ing liquid due to germ curvature. The surface energy
0i/w is estimated from the latent heat using (8).

We integrate (9) from the freezing point (7o, a; = 00)
to an equilibrium temperature 7, and equilibrium ra-
dius a4 given values of L, from (3c), p; from Prup-
pacher and Klett [1997, equation 3-2] and 7;/,, from (8).
We show in Appendix B that to a good approximation
(2) can be written as

167ra§.i w

" 3[Lmepi In(To/T2)]?’

Fy (10)

where the averages Em,c and p; are defined in Ap-
pendix B.

5. Estimatihg the Activation Energy

The ice-water activation energy Ag¥ is the final phys-
ical quantity needed to evaluate the nucleation rate us-
ing (1). There are no direct measurements of Ag¥; it is
typically inferred from two measurable quantities: the
viscosity 7 or the self-diffusivity D. The defining rela-
tionships are [Glasstone et al., 1941]

D Do exp(—Ep(T)/RT)

n = mnoexp(Ey(T)/RT),
where Dy and 7 are approximately independent of tem-
perature. At temperatures near the melting point the

energies in the Boltzman factor, Fp and E,, agree
within experimental error and are about 4.6 Kcal mol~?

(11)
(12)
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[Krynicki et al., 1980]. Thus Ag# is equated to either
Ep [Pruppacher, 1972] or to E, [Dufour and Defay,
1963]. We will determine Ag# from Ep(T) using the
supercooled self-diffusivity measurements of Prielmeier
et al. [1988]. These measurements were made on bulk
samples of supercooled droplets at pressures as high as
3000 bars.

There are two different procedures used to calculate
activation energies from self-diffusivity measurements;
this has led to large discrepancies in the estimation of
Ag#*. The most common procedure is to define the
effective activation energy as [Pruppacher, 1972):

Ag* = Ep = —Rd(In D)/d(T™}). (13)

This relationship can be derived directly from (11)
or from thermodynamic arguments [Wang, 1952] and
has the advantage of removing the unknown coefficient
Dy from the estimate of Ag#. The implicit assumption
in either the algebraic or thermodynamic derivation of
(13) is that the temperature dependence of Ep(T) is
weak compared to the 1/T dependence of the exponen-
tial. Although this condition is satisfied above 0°C, it
fails in the supercooled region where the temperature
dependence of Ag# is strong.

An alternative is to separately estimate both D and
Dy and use (11) directly to determine Ep. The dif-
fusivity D(T) is available from Prielmeier et al. [1988],
who have fit their self-diffusivity measurements in the
temperature range 218 K < T < 450 K and the pres-
sure range 1 bar < p < 3000 bars using an empirical
Vogel-Tamman-Fulcher equation:

D(T) = Dy exp[—B/(T — Ti)].
Using (11), Ag? is given by

B D
Ag*? = Ep = RT - ==1]. 1
= Fp =t [T ()] 09

To estimate Dy, we use a separate set of measure-
ments by Harris and Woolf [1980] between 0°C and
50°C in the same pressure range. We assume that at
these temperatures Ep (T) is roughly constant and with
this assumption fit (11) to the Harris and Woolf D(T)
values. The fit returns both Dy and the average ac-
tivation energy Ep. Table 2 summarizes these results.
The best fit average activation energy Ep is within the
experimental error of Ep(T" = 25°C) determined by
Woolf [1975].

The activation energy predicted by (15) at various
pressures is shown in Figure 4, which shows a signi-
ficant decrease in g# with increasing pressure. Four
estimates of Ag# at atmospheric pressure are shown
in Figure 5. The solid line is a cubic fit [Pruppacher
and Klett, 1978, equation 7-50a] derived using (13) and
the self-diffusion data of Pruppacher [1972]. The short-
dashed line labeled “Corrected” shows the estimate of
Ag# obtained when the data of Pruppacher [1972] is
instead evaluated using (14) and (15). The long-dashed
line labeled “Preilmeir [1988]” gives the Ag# estimate

(14)




25,274

Table 2. Self-Diffusivity Parameters for Equation (15)
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p, bar D,, 10°°m?s™! B, K! T., K Dy 10°m?s™' Ep, kI mol™!

1 4.14 347 177 349 18.2

100 6.46 455 161 328 18.0

500 8.90 563 143 263 17.5
1000 10.1 622 133 210 16.9
1500 11.2 668 126 175 16.5
2000 8.93 614 131 157 16.3

D., B and T\ are from Prielmeier et al. [1988]. Dy and E are from a fit to the results

of Harris and Woolf [1980].

using (14) and (15) applied to the self-diffusion data of
Prielmeier et al. [1988]. The dotted line labeled “Prup-
pacher [1995]” gives the correction proposed by Prup-
pacher [1995] to the usual Ag# estimate obtained using
(13).

Our analysis indicates that neglecting the dEp /d(T~1)
term in the derivation of (13) introduces a substantial
error in the estimation of Ep (and hence Ag¢) at su-
percooled temperatures. Pruppacher’s [1995] correction

o (13) (shown by the dotted line in Figure 5) assumes

the formation of molecular clusters at low temperat-
ures, which can increase transport of water molecules
(and hence lower the ice-water activation energy) even
as the activation energy for self-diffusion sharply in-
creases [Pruppacher, 1995]. Although it is possible that
molecular clusters do play a role in germ formation, the
reanalysis presented in this section significantly reduces
the motivation for introducing a speculative physical
process into the formulation of Ag#. We will there-
fore use (15) and the usual assumption of equivalence
between Ag# and Ep in our analysis of the nucleation
equation in section 6.

o
N~ — 1 bar
R — 100 bars
---- 500 bars
T/‘_\ o ——- 1000 bars
5@ 1. —— 1500 bars
= . —-— 2000 bars
E -
O
X
1*c:bg ]
<
o
<
T T ! !
60 -40 -20 0
T (°C)

Figure 4. The value Ag# at various pressures. Val-
ues calculated from equation (15) with parameter values
from Table 2.

6. Homogeneous Nucleation Rate

We are now in a position to evaluate (1) given the
new values for Ly, 0;/y, and Ag# calculated from (3c),
(8), and (15), respectively, with p,, and s,, given by the
equation of state.

Figure 6: 0.83*5=4.15in Figure 6 shows the resulting
nucleation rates, including the new nucleation measure-
ment of Huang and Bartell [1995] using very small (3
nm radius) water droplets for the mother phase. These
droplets have an internal pressure of ~ 550 bars; nuc-
leation rates at this higher pressure are given by the
dotted line. To evaluate the energy of formation (AFy)
for these small droplets, we use (B5) with ag = 3 nm
and 0,/ from Huang and Bartell [1995]:

Twja = 111.63 — 0.13167T, (16)

< —— Pruppacher and Klett [1978]
- = =~ Corrected

— — Prielmeir et al. [1988]
N Pruppacher [1995]
~—

10

Ag” (Kcal mol™)
6 8

4

2

T(°C)

Figure 5. The value Ag# at supercooled temperatures.
Line labels are “Pruppacher and Klett [1978]”: Prup-
pacher’s estimate using (13) and measurements from
Pruppacher [1972]; “Corrected”: a reanalysis of Prup-
pacher [1972] using (14) and (15) instead of (13); “Pri-
elmeter et al. [1988]”: values of Ag# adopted here; and
“Pruppacher [1995])”, the correction to Ag# used by
Pruppacher [1995].
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Figure 6. Comparison of J at 1 bar and 550 bars.
The data of Huang and Bartell [1995] (diamonds) are
at 550 bar because of the very small size of the droplets.
The other data (listed below) are at 1 bar. Squares
are from Pruppacher [1995], circles are from Wood and
Walton [1970], triangles are from Butorin and Skripov
[1972], plus signs are from Demott and Rogers [1990],
and crosses are from Hagen et al. [1981].

where T is in Kelvins and o0y, is in mN m~!. The
equilibrium melting temperature, Tys was determined
from Wagner et al. [1994]; Tps is 0 at 1 bar, is -0.8 at
100 bars, is -4.1 at 500 bars, is -8.8 at 1000 bars, is
-14.3 at 1500 bars, and is -21.0 at 2000 bars. The ac-
tivation energy Ag# was calculated at 500 bars, which
introduces negligible error.

Figure 6 shows good agreement between observations
at 1 atmosphere and the theoretical nucleation curve.
The data and the theory are not completely independ-
ent, however, because the surface energy slope constant
(ks in (8)) has been selected to produce the best fit
to measurements at 1 atmosphere and temperatures
warmer than —45°C. The Huang and Bartell [1995]
data point at —70°C and 550 bars provides one inde-
pendent test of (8). Figure 6 also shows the effect of the
strong pressure dependence in Ag# on the nucleation
rate. At one atmosphere the sharply increasing activ-
ation energy forces a decrease in J below T= -60 °C.
At 550 atmospheres both the magnitude and the rate of
increase of the activation energy are reduced (see Fig-
ure 4), and the decreasing o/, increases the nucleation
rate as the temperature is reduced below T= —60°C.

Additional tests are available from pressure-dependent
measurements of the homogeneous freezing temperature
Tx, which can be well-approximated as the temperature
at which 99.99% of a population of droplets of volume
V4 will freeze homogeneously. Pruppacher and Klett
[1997, equation 7-72] show that given the equilibrium
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melting temperature Tys, the cooling rate 7., and the
droplet volume Vy, Ty & Tye.99 is given by

To 3 Ye
/ J(T)dT =9.2157 (17)

To9.99 d

Figure 7 shows a comparison between (17) and obser-
vations in the pressure range 0.1 bar < p < 2000 bars.
The distance between opposing arrows indicates  the
range in Ty produced by variations in droplet volume
Va corresponding to radii between 0.1 ¢ and 1000 pm.
The nucleation rates capture the general downward
trend in Ty at pressures below 1000 bars, although
the rate of change is underestimated. Included in Fig-
ure 7 are estimates of Ty at 1500 and 2000 bars. These
are connected by a dotted line on Figure 7, to emphas-
ize their qualitative difference with the size-dependent
Ty values found at lower pressures. At pressures of
1500 bars and 2000 bars the equation of state pre-
dicts a phase transition at temperatures of —73°C and
—93°C, respectively. The phase transition (discussed in
detail by Jeffery [1996]) between high-density and low-
density liquid water rapidly forces droplet nucleation
independent of droplet size.

7. Summary and Conclusions

We have used a new analytic equation of state to
investigate the behavior of the classical homogeneous

o —— D=0.1-1000 um
- O ¥ .
< 6 HDW — LDW
O%QIX‘
O 3 - %y
E %
o |
% g O g 0o
00 05 10 15 20 25
p (kbar)

Figure 7. Effect of droplet diameter on T at various
pressures. The very short lines at 1500 and 2000 bars
are a result of a HDW — LDW phase transition. The
arrows positioned at the ends of the predicted Ty values
have been added for emphasis. Squares are from Kanno
[et al. ][1975], and diamonds are from Xans and Barnaud
1975].
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nucleation equation at supercooled temperatures and
a range of pressures. The eight fitted coefficients lis-
ted in Appendix A are constrained by several thou-
sand measurements of the temperature, pressure, dens-
ity, and entropy of liquid water in the temperature
range —34°C < T < 1200°C and the pressure range
1 bar < p < 3000 bars. An additional constraint
lies in the derivation of the equation of state, which is
based on observations about the role played by strong
hydrogen bonds in determining the properties of water
[Jeffery, 1996; Jeffery and Austin, 1997, manuscript in
preparation]. This foundation in a physical model for
water substantially reduces the parameter space to be
searched for the best nonlinear least squares fit to the
data.

In this paper we have treated the equation of state as
an empirical relationship and used it to infer the dens-
ity and the latent heat of melting and through them the
surface energy and free energy of germ formation. We
have also presented an analysis of the activation energy
for self-diffusion of water, suggesting that the temper-
ature variation of the ice-water activation energy is less
than is conventionally assumed at supercooled temper-
atures. In particular, our results indicate that labor-
atory and aircraft observations of homogeneous nucle-
ation can be explained without the need to postulate
abrupt changes in the activation energy at '~ —45°C.

The parameter set, inserted into the classical nuc-
leation equation, accurately predicts the recently ob-
served nucleation rate of liquid water at —70°C and at-
mospheric pressure, and the homogeneous freezing tem-
perature at high pressures. We have followed many au-
thors [e.g., Huang and Bartell, 1995; Pruppacher, 1995]
in assuming that classical nucleation theory applies and
that, for example, macroscopic parameters such as the
solid-liquid surface energy o;; have physical meanirg for
small water clusters away from the equilibrium freezing
point. One example of an alternative approach, using
an explicit partition function to calculate the free en-
ergy of formation AFy, was developed by Eadie Eadie
[1971]. Future laboratory and aircraft measurements
of the nucleation rate at temperatures between —45°C
and —70°C and of the homogeneous freezing temperat-
ure with a variety of cooling rates and droplet sizes at
high pressures would provide additional detailed tests
of both classical and statistical-mechanical nucleation
theory and of the predictions of the equation of state.

Appendix A: Equation of State

In this appendix we give the functional form of the
equation of state. For a full discussion of the deriva-
tion, readers are referred to Jeffery [1996]. Programs
(in Fortran77) that compare the density, entropy, and
heat capacity of the equation of state against observa-
tions are available from the authors.

As discussed section 2, the equation has the following
basic form:
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p=po+2pus. (A1)
For po we use a Van der Waals-type equation that is

a modified version of the Song and Mason [1990a, b]
equation of state:

Po
puwRT

_ avw

=1 + (bvw- =z ) pu (A2)
S S

1- /\b(T)pw .
Where b(T") is related to the excluded volume and has
the following functional form:

+  QeosPuw [

0.3 exp(—12.15(T/Ts + 0.1608)3)
(A3)

b(T)/ve =
— by exp(1.066T/T5) + b.

The second component of the fitted equation is the
hydrogen bond term suggested by Poole et al. [1994].
We follow Poole et al. [1994] and write Helmholtz free
energy as a simple partition function. We assume a
combination of strong bonds with energy € = egp and
entropy S = Sgp and weak bonds with energy ¢ = 0
and entropy S = Sp. The number of configurations of
each bond type is then Q¢ = exp(—So/R) and Qpp =
exp(=Sugs/R), respectively.

The total hydrogen bond free energy is assumed to
be a mixture of the two bond types [Jeffery, 1996]:

—fRT In[Q + Qpp exp(—exs/RT)]
—(1 = f)RTIn(Q + Qu5), (A4)

where the mixture fraction f is a function of temperat-
ure and density.
We separate the temperature and density deperidence

so that f(T, pu) = f*(pu) £ (T), where

Agp =

" _ 1+C
NG exp [(pw — puB)/0)? + C1’ (ASa)
F(T) = exp[-0.18(T/T})%, (Abb)
o = Caypms, (Abc)

with Ty = 273.15 K and 0 < C; < 1.
Using (3a), we obtain for the pressure [Jeffery, 1996]

PEHB = pﬁ,a—g; (=fRTIn Qo + (A6)
Qupexp(—ems/RT) — InQo + Qur))
= 2fp2 (—p’%@RT(ln[QO +
Qupexp(—egp/RT)] - In[Qo + Qup)),
where
Fo= (1+Ch)exp[(pw — puB)/o]? «

(exp [(pw — prB)/0]? + C1)?

exp[—0.18(T/T})?]. (A7)
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The entropy s, can now be obtained from (A1) us-
ing (3a) and (3b). The determination of the volume-
dependent function that results from the integration of
(3b) is discussed in Jeffery [1996].

The following coefficients are returned from the fit-
ting process (see the notation list for definitions):

PHB 0.8537 g cm™3;

So -66.156 J mol=! K~1 (Qy = exp(~So/R));
SuB -4.464 Jmol~' K~ (Qyp = exp(—SuB/R));
Cy 0.3985;

Cy 0.15758;

Qeos 2.140 vp;

b1 0.24273;

by 1.0298.

The following constants are passed to the fitting pro-
gram and are not modified:

Ts 1408.4 K;

vB 4.1782 x 10~% m3 mol~1;
ayw 0.5542 Pam® mol~2;
bvw 4.44 x 1075,

A 0.30532;

€HB 13.5 kJ mol~1.

Appendix B: A Closed-Form
Approximation to the Free Energy of
Formation

The derivation of the critical radius a, of an ice germ
suspended in a drop of pure water of radius a4, begins
with (9), which relates the differentials of T, ¢, ag and
a; at thermodynamic equilibrium. Integration of (9)
from equilibrium at the freezing point (Tp, a; = o0) to
(ag, Te) provides the equilibrium radius. In this ap-
pendix we will do this first by neglecting the curvature
adjustment to the latent heat and the size depend-
ence of the liquid drop (i.e., piLy, > 2(0y/y/ai) and
d(0ijw/a;) > d(0yja/aq) ), then adding these terms.
With both approximations we have the following from

(9):
fooa iy (522 =0
a;=00 ,/W(Tg p1 ai

oo -
(B1)

Integrating (B1) gives

ln& = ——fai/w

—, (B2)
Te  Lypia;
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where
L, /T
1/T

Te
_ Jgeg Ln/TdT
=== ~
fT:TD 1/7dT
Note that because of the very weak temperature de-

pendence of p;, it can be separated out of the average
1/(piT) and represented by a simple temperature aver-

age p;.
Substituting for 2

[l

(B3)

(%2£2) in (2) using (B2) gives the

corrected latent heat: '
Lme = Ly —In(Ty/T.) L (B4)

Incorporating (B4) into (B2) and using (2) gives (10)
in section 4:

16#05’/10

AFM = —
! 3[Lm,epi In(To /Te)]?

If we also remove the large droplet approximation and
include (a—;’-dﬂ) in (9), (10) becomes

167wo3

AR = —— ¥ ., (BY)

3[Lm,cpi ln(To/Te) - w’]2

where
’ 2‘77'11;/a _

W= 2 (Pw — i), (B6)

~ fj?iT 1/pwdT 1/pw
1/pw = ~ (B7)

fpegdr T

and py, is the density of water.

We have compared values for AFg(l) and AFf) (using
aq = 1 pm) with a numerical integration of (9) between
—70°C < T' < —30°C at atmospheric pressure. The
rms deviations between the analytic and numeric val-
ues are 6.72 x 102! J for AF{" and 4.41 x 10-2! J

for AFf) . At these temperatures AF, varies from 0 to
3.6 x 1071° J, so that the standard deviations are 3-
4% of typical values. Therefore (10) and (B5) have been
used here for calculations for AF,. The small difference
between the analytic and numeric results also demon-
strates that the effect of droplet curvature on AFy is
negligible for typical droplet sizes.

Notation
Qeos temperature dependent function.
Qy specific volume of water (A2).
€HB energy of strong hydrogen bonds in water

(A4).
n  viscosity (12).
Mo viscosity coefficient (12).
A constant (A2).
PHB hydrogen bond density (Aba).
pi density of ice.
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density of water (1).

f function width defined by (A5c).
ice-water surface energy (8).

solid-liquid surface energy (7).

water-air surface energy (16).

Boyle volume (A3).

number of configurations of weak hydro-
gen bonds (A4).

number of configurations of strong hydro-
gen bonds (A4).

specific Helmholtz free energy (3b).

the radius of a water droplet (9).

the radius of an ice germ (9).

Van der Waals constant (A2).

molar free energy of open tetrahedral hy-
drogen bonds (A4).

temperature dependent function (A3).
fitted constants in the expression for b
(A3).

fitted constant defined by (14).

Van der Waals constant (A2).

specific heat capacity.

fitted constants in the expressions for f(7T), py)

(A5a).

self-diffusivity (11).

self-diffusivity coefficient (11).

a fitted constant defined by (14).
activation energies for viscosity and self-
diffusion (11) and (12).

fraction of hydrogen bonds that are cap-
able of forming strong bonds.

function defined by (Aba).

function defined by (A5b).

free energy of formation of an ice germ
(2).

ice-water activation energy (13).
Planck’s constant.

homogeneous nucleation rate (1).
Boltzmann’s constant.

0.00009 J m~2 K~ slope constant in the
0i/w expression (8).

0.32, an estimated constant defined in (7).
latent heat of melting (3c).

average latent (B3).

corrected latent heat including curvature.
Avogadro’s number.

T bulk freezing temperature of water.
temperature at which 99.99% of a popu-
lation droplets freezes.

T, fitted constant defined by (14).

T99.99

T equilibrium freezing temperature of a su-
percooled droplet.
T homogeneous freezing temperature.
Ty equilibrium bulk melting temperature.
Ts the temperature of the anomaly. (T,=
—45°C);

Va droplet volume (17).
w’  function defined by (B6).

Acknowledgments. We are grateful to Marcia Baker
for introducing us to Poole et al. [1994], to Jon Nelson for
pointing out the homogeneous freezing measurements repor-
ted by MacKenzie [1977)], to Marcia and Birger Bergersen
for many helpful discussions, to two anonymous reviewers
whoose comments improved the manuscript. This work
is supported by grants from the Atmospheric Environment
Service and the National Science and Engineering Research
Counclil of Canada.

References

Angell, C. A., Supercooled water, in Water, A Comprehens-
we Treatise, edited by F. Franks, vol. 7, chap. 1, pp. 1-81,
Plenum, New York, 1982.

Angell, C. A., M. Oguni, and W. J. Sichina, Heat capacity
of water at extremes of supercooling and superheating, J.
Phys. Chem., 86, 998, 1982.

Bartell, L. S., and J. Huang, Supercooling of water below
the anomalous range near 226 K, J. Phys. Chem., 98,
7455, 1994.

Butorin, G. T., and V. P. Skripov, Crystallization of super-
cooled water, Sov. Phys. Crystallogr., Engl. Transl., 17,
322, 1972.

Coriel, S. R., S. C. Hardy, and R. F. Skerka, A non-linear
analysis of experiments on the morphological stability
of ice cylinders freezing for aqueous solution, J. Cryst.
Growth, 11, 53, 1971.

Demott, P. J., and D. C. Rogers, Freezing nucleation rates
of dilute solution droplets measured between —30°C and
—40°C in laboratory simulations of natural clouds, J. At-
mos. Sci., 47, 1056, 1990.

Dufour, L., and R. Defay, Thermodynamics of Clouds, Aca-
demic, San Diego, Calif., 1963.

Eadie, W. J., A molecular theory of the homogeneous nuc-
leation of ice from supercooled water, Ph.D. thesis, Univ.
of Chicago, Chicago, Ill., 1971.

Floriano, M. A., and C. A. Angell, Surface tension and molar
surface free energy and entropy of water to —27.2°C, J.
Phys. Chem., 94, 4199, 1990.

5.85x10'* cm™2, the number water monomers Glasstone, S., K. J. Laidler, and H. Eyring, The Theory of

in contact with the ice surface.

pressure.

background pressure from the new equa-
tion of state (A2).

pressure exerted by strong hydrogen bonds
(AS6).

specific entropy of ice and water.
universal gas constant.

weak bond entropy (2o = exp(—So/R)).

strong bond entropy (Q2yp = exp(—Sup/R)).

temperature.

Rate Processes, McGraw-Hill, New York, 1941.

Haar, L., J. S. Gallagher, and G. Kell, NBS/NRC Steam
Tables, Hemisphere, Washington, D.C., 1984.

Hagen, D. E., R. J. Anderson, and J. L. Kassner, Homogen-
eous condensation—freeing nucleation rate measurements
for small water droplets in an expansion cloud chamber,
J. Atmos. Sci., 38, 1236, 1981.

Hardy, S. C., A grain boundary groove measurement of the
surface tension between ice and water, Philos. Mag., 35,
471, 1977.

Hare, D. E., and C. M. Sorensen, The density of supercooled
water, 11, Bulk samples cooled to the homogeneous nuc-
leation limit, J. Chem. Phys., 87, 4840, 1987.



JEFFERY AND AUSTIN: HOMOGENEOUS NUCLEATION OF SUPERCOOLED WATER

Harris, K. R., and L. A. Woolf, Pressure and temperature
dependence of the self diffusion coefficient of water and
oxygen-18 water, J. Chem. Soc. Faraday Trans. 1, 76,
377, 1980.

Heymsfield, A. J., and L. Miloshevich, Homogeneous ice
nucleation of supercooled liquid water in orographic wave
clouds, J. Atmos. Sci., 50, 2335, 1993.

Huang, J., and L. S. Bartell, Kinetics of homogeneous nuc-
leation in the freezing of large water clusters, J. Phys.
Chem., 99, 3924, 1995.

Jeffery, C. A., The thermodynamic behaviour of supercooled
water: Results from a new equation of state, Master’s
thesis, Univ. of Br. Columbia, Vancouver, Br. Columbia,
Can., 1996.

Jones, D. R. H., The measurement of solid-liquid interfa-
cial energies from the shapes of grain-boundary grooves,
Philos. Mag., 27, 569, 1973.

Kanno, H., R. J. Speedy, and C. A. Angell, Supercooling of
water to —92°C under pressure, Science, 189, 880, 1975.

Ketcham, W. M., and P. Hobbs, Step growth on ice during
freezing of pure water, Philos. Mag., 18, 659, 1969.

Krynicki, K., C. D. Green, and D. W. Sawyer, Pressure
and temperature dependence of self-diffusion in water, J.
Chem. Soc. Faraday Discuss. Chem. Soc., 66, 199, 1980.

Liu, X.-Y., The surface free energy of solid-fluid inter-
faces: Aninhomogeneous cell model description, J. Chem.
Phys., 98, 8154, 1993.

MacKenzie, A. P., Non-equilbrium freezing behaviour of
aqueous systems, Phils. Trans. R. Soc. London, Ser. B,
278, 167, 1977.

McMullen, W. E., and D. W. Oxtoby, A theoretical study
of the hard sphere fluid-solid interface, J. Chem. Phys.,
88, 1967, 1988.

Melhem, G. A., R. Saini, and B. M. Goodwin, A modified
Peng-Robinson equation of state, Fluid Phase Equilib.,
47, 189, 1989.

Oxtoby, D. W., and P. R. Harrowell, The effect of density
change on crystal growth rates from the melt, J. Chem.
Phys., 96, 3834, 1992.

Poole, P. H., F. Sciortino, T. Grande, H. E. Stanley, and
C. A. Angell, Effect of hydrogen bonds on the thermo-
dynamic behavior of liquid water, Phys. Rev. Lett., 73,
1632, 1994.

Prielmeier, F. X., E. W. Lang, R. J. Speedy, and H.-
D. Liidemann, The pressure dependence of self diffusion
in supercooled light and heavy water, Ber. BunsenGes.
Phys. Chem., 92, 1111, 1988.

Pruppacher, H. R., Self-diffusion coefficient of supercooled
water, J. Chem. Phys., 56, 101, 1972.

Pruppacher, H. R., A new look at homogeneous ice nuc-
leation in supercooled water drops, J. Atmos. Sci., 52,
1924, 1995.

Pruppacher, H. R., and J. D. Klett, Microphysics of Clouds
and Precipitation, D. Reidel, Norwell, Mass., 1978.

Pruppacher, H. R., and J. D. Klett, Microphysics of Clouds

25,279

and Precipitation, Kluwer Acad., Norwell, Mass., Boston,
MA, 2nd ed., 1997.

Sassen, K., and G. C. Dodd, Homogeneous nucleation rate
for highly supercooled cirrus cloud droplets, J. Atmos.
Sci., 45, 1357, 1988.

Song, Y., and E. Mason, Statistical-mechanical theory of
a new analytical equation of state, J. Chem. Phys., 91,
7840, 1989.

Song, Y., and E. A. Mason, Analytical equation of state
for molecular fluids: Kihara model for rodlike molecules,
Phys. Rev. A, 42, 4743, 1990a.

Song, Y., and E. A. Mason, Analytical equation of state
for molecular fluids: Comparison with experimental data,
Phys. Rev. A, 42, 4749, 1990b.

Speedy, R. J., Limiting forms of the thermodynamic diver-
gences at the conjectured stability limits in superheated
and supercooled water, J. Phys. Chem., 86, 3002, 1982a.

Speedy, R. J., Stability-limit conjecture: An interpretation
of the properties of water, J. Phys. Chem., 86, 982, 1982b.

Speedy, R. J., Two waters and no ice please, Nature, 380,
289, 1996.

Speedy, R. J., and C. A. Angell, Isothermal compressibility
of supercooled water and evidence for a thermodynamic
singularity at —45°C, J. Chem. Phys., 65, 851, 1976.

Tanaka, H., A self-consistent phase diagram for supercooled
water, Nature, 380, 328, 1996.

Turnbull, D., Formation of crystal nuclei in liquid metals, J.
Appl. Phys., 21, 1022, 1950.

Wagner, W., A. Saul, and A. Pruss, International equations
for the pressure along the melting and along the sublim-
ation curve of ordinary water substance, J. Phys. Chem.
Ref. Data, 23(3), 515, 1994.

Wang, J. H., Tracer-diffusion in liquids, III: The self-
diffusion of chloride ion in aqueous sodium solutions, J.
Am. Chem. Soc., 74, 1612, 1952.

Wood, G. R., and A. G. Walton, Homogeneous nucleation
kinetics of ice from water, J. Applied Phys., 41, 3027,
1970.

Woolf, L. A., Tracer diffusion of tritiated water (THO) in
ordinary water ( H2O) under pressure, J. Chem. Soc.
Faraday Trans. 1, 71, 784, 1975.

Xans, P., and G. Barnaud, Thermodynamique, C. R. Acad.
Sc. Ser. B, 280, 25, 1975.

Xie, Y., K. F. Ludwig, Jr., and G. Morales, Noncritical be-
havior of density fluctuations in supercooled water, Phys.
Rev. Lett., 71, 2050, 1993.

P.H. Austin and C.A. Jeffery, Atmospheric Sciences Programme, #217
Geography, 1984 West Mall, University of British Columbia, Vancouver,
B.C. V6T 1Z2 Canada. (e-mail: phil@geog.ubc.ca; cjeff@geog.ubc.ca)

(Received March 3, 1997; revised July 28, 1997;
accepted July 31, 1997.)



